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Stochastic Approach to Optimal Aerodynamic Shape Design

Sherif Aly,* Madara Ogot,T and Richard Pelz}
Rutgers University, Piscataway, New Jersey 08855-0909

The purpose of this study was to show that stochastic methods can be applied effectively to optimal
aerodynamic shape design problems, and that optimal solutions within relatively complex design spaces
can be located in a reasonable amount of computation time. The design methodology presented is based
on a modified simulated annealing algorithm and is global in nature, i.e., relative large complex design
spaces can be automatically investigated. Current approaches that typically employ gradient-based op-
timization schemes tend to get caught in the numerous real and false local minima common in the design
spaces of practical aerodynamics shape design problems. Within the context of the optimal shape design
of a minimum drag axisymmetric forebody problem, a comparison was made between the proposed
stochastic methodology and a gradient-based optimization approach. The results obtained clearly dem-
onstrated the ability of this methodology to locate optimal designs in relatively complex design spaces
where gradient-based optimization approaches experience difficulties. Further, the computation time re-
quired by the stochastic approach compared favorably to that of the gradient-based method.

Nomenclature
= cross-sectional area of forebody, m®
coefficient of drag
force of drag, N
length of Markov chain
number of cross sections
Metropolis criterion
= random number uniformly distributed over the range
{0, 1]
= baseline parabolic shape
radius at the ith cross section, ft
= control parameter
freestream air velocity, m/s
= distance from the nose of the forebody measured
along the z axis, ft
= length of forebody, ft
nose angle, deg
control parameter reduction coefficient
change in objective function value
freestream air density, kg/m3
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Introduction

OMPUTATIONAL FLUID DYNAMICS (CFD) has be-

gun to play an increasingly important role in the aircraft
industry because of its ability to produce detailed insights into
complex flow phenomena and its ease of parameterization,
which can help identify the cause of weak aerodynamic per-
formance. Some of the earlier uses of CFD in the design pro-
cess were based on the cut-and-try approach. Here the designer
iteratively modifies and evaluates a design." While considera-
ble gains in aerodynamic performance can be achieved by this
approach, continued improvement is much more difficult to
attain. Because of the complexity of fluid flow and shape, it
is unlikely that repeated interactive trials in a design procedure
can lead to a truly optimum design. Therefore, automatic de-
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sign techniques are needed to fully realize potential improve-
ments in aerodynamic efficiency.?

The use of constrained numeric optimizers has recently be-
come increasingly attractive. In one approach, often referred
to as shape perturbation methods, a CFD analysis code is cou-
pled with a numeric optimizer. The optimizer, usually gradient-
based, determines the values for a set of user-generated design
parameters that define an optimal geometry with desirable
characteristics while satisfying some design constraints. This
approach was used by Hager et al.’ for the two-point design
of a transonic airfoil for improved off-design performance.
Cheung et al.* utilized the methodology for the design of a
theoretical minimum-drag body. Other demonstrations of the
use of shape perturbation methods include the design of a
high-speed civil transport (HSCT) wing,® the shape optimiza-
tion of an airfoil under inviscid flow,® and the evaluation of
an aircraft’s performance using unstructured grids.’

The predominant use of gradient-based optimizers, however,
limits the success that can be achieved through shape pertur-
bation. Gradient-based optimizers typically use finite differ-
ence techniques to estimate gradients. This approach consumes
the bulk of the computational effort and can often yield inac-
curate gradients.® In addition, there is a rapid rise in the num-
ber of function evaluations required as the number of design
variables increases. Finally, this approach can be impractical
in domains with a large number of local minima.” The success
of the optimization process for these domains, which are com-
mon in shape optimization problems, will depend on the lo-
cation of the initial guess within the design space. To circum-
vent these difficulties, researchers often start the optimization
process from relatively good initial designs and use a linear
combination of base analytical body shapes to define their final
configuration. This formulation ensures that the design opti-
mization procedure will yield a reasonable or physically ac-
ceptable shape for the optimal solution.

Other design approaches, collectively referred to as inverse
design methods, directly determine airfoil geometry by finding
a shape that generates specified surface conditions.'®"'* An in-
trinsic problem with these methods, however, is that the quality
of the optimized shape depends on the surface distribution,
usually pressure or velocity, that it is required to match. There-
fore, an inverse design approach depends on the knowledge of
the designer to establish a desirable optimum."® Further, they
do not lend themselves to the imposition of constraints.*

For shape perturbation approaches to be effectively applied
to aerodynamic design, they must be able to arrive at an op-
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timal solution within a reasonable amount of computation
time. This goal can be realized by 1) minimizing the compu-
tation time required for each flowsolve, and 2) reducing the
total number of flowsolves. Reducing the computation time
necessary for each flowsolve can be achieved in several ways.
The most common and simplest is through the use of coarser
grids and incomplete convergence. Care must be taken, how-
ever, to ensure that the validity of the objective function is not
compromised. This approach introduces numerical errors that
add a roughness to the objective function surface, creating
problems for gradient-based optimizers. The roughness may
cause the calculation of inaccurate gradients and could be mis-
taken for local extrema by the optimization algorithm.'

Several researchers have employed response surface meth-
odologies to overcome the problems presented by noisy ob-
jective functions surfaces."” Response surfaces are smooth
functions that define the relationship between the independent
and dependent variables. These smooth functions are selected
so that the prominent features of the objective function are
retained while false local minima may be avoided. However,
response surfaces, which are typically polynomial approxi-
mations, may not accurately represent the actual objective
function surface that may not be polynomial in nature. Further,
the creation of the response surface demands a high compu-
tational cost because of the large number of design points,
upon which the response surface is based, that must be eval-
uated.

The purpose of this investigation is to demonstrate the prac-
ticality of using a stochastic approach for optimal aerodynamic
shape design. Specifically, this study seeks to 1) demonstrate
how stochastic methods can overcome some of the previously
enumerated difficulties experienced by gradient-based opti-
mizers, and 2) arrive at optimal or near-optimal solutions with-
out requiring an excessive amount of computation time. These
issues are explored and discussed within the context of the
optimal shape design of a minimum drag axisymmetric fore-
body problem. The next section will discuss previous efforts
in stochastic shape optimization. This will be followed by a
description of the numerical optimizers used in this study to
solve the forebody problem along with the Euler formulation
used. Next is the problem description followed by the results
from the gradient-based and stochastic approaches. Finally, a
comparison of the two approaches is presented and discussed.

Background on Stochastic Aerodynamic
Shape Optimization

Several researchers have recognized the limitations of gra-
dient-based approaches to CFD shape design and have initiated
investigations into the use of stochastic methods. As an alter-
native to gradient-based optimization for the preliminary de-
sign of wings, Gage and Kroo® employed genetic algorithms
(GA). GAs occupy a gap in the range of optimization tech-
niques between gradient-based methods and random search
techniques. The objective function in their study was the min-
imization of induced drag with fixed lift. They found that a
standard GA was able to locate optimal designs, but it was
sensitive to constraint-handling schemes and required signifi-
cantly more computation time than a gradient-based method.
Despite modifications made to the algorithm to improve the
handling of constraints, the GA still remained more computa-
tionally intensive than gradient-based methods. However, their
work was successful in demonstrating that a noncalculus based
approach can be applied to problems that cannot possibly be
solved by gradient-based methods.

Other researchers who have employed GA for aerodynamic
shape design acknowledge the large number of function eval-
uations (each function evaluation corresponds to a flowsolve)
required to converge to an optimal solution.'>"” They suggest
that coupling a GA with a gradient-based optimizer may re-
duce computation time. Genetic algorithms are applied to an
inverse design optimization method in Obayashi and Takana-

shi.'® Once target pressure distributions are obtained, corre-
sponding airfoil or wing geometries are computed by an in-
verse design code coupled with a Navier—Stokes solver. In this
study, the authors conclude that to reduce computation time
further, enhancement of the GA and parallel computing tech-
niques need to be investigated.

The results from the limited studies conducted in stochastic
optimal aerodynamic shape design demonstrate the ability of
stochastic methods to overcome the difficulties experienced by
gradient-based approaches. These studies, however, also illus-
trate that the excessive computation time required still serves
as an obstacle to their broader use. The aim of this investi-
gation, therefore, is to develop a practical stochastic approach
to aerodynamic shape design, which overcomes the limitations
of gradient-based approaches, while maintaining a computa-
tional effort comparable to those of current gradient-based ap-
proaches. This investigation employs a stochastic approach to
the optimal aerodynamic shape design of an axisymmetric
forebody. A comparative study was conducted between the sto-
chastic approach (SAWI) and a gradient-based optimizer
(NPSOL).

Numeric Optimizers

Simulated Annealing with Iterative Improvement

Simulated annealing (SA) was first introduced by Kirkpat-
rick et al.”” and is analogous to the physical process of an-
nealing solids. The algorithm, based on Monte Carlo tech-
niques, consists of the following steps:

1) Select an initial configuration and calculate the objective
function value E.

2) Randomly generate a new system configuration and mea-
sure AE.

3) If AE = 0, accept the new configuration, i.e., the new
configuration becomes the current configuration, or, if AE > 0
and P = ¢ "7 = R, accept the new configuration.

4) Repeat steps 2 and 3 m times to complete a Markov chain.

5) Lower the value of T and repeat steps 2—5 until conver-
gence.

The number of new configurations generated at a particular
T constitutes a Markov chain. They are generated by randomly
assigning different values to the design variables. As T is low-
ered, the probability that an inferior configuration is accepted
approaches zero. The rate of convergence, and the correspond-
ing quality of the final solution is determined by a cooling
schedule, which establishes the rate at which 7 is lowered. If
T is lowered too fast, quenching, or the convergence of the
optimization process to high-lying local minima can occur. Nu-
merous methods for implementing a cooling schedule have
been proposed in other publications.'”® For this study the
method proposed by Kirkpatrick et al.'” is used. After every
Markov chain, T is reduced by a factor 87, where 8 is pre-
defined and typically lies between 0.05-0.30.

By accepting configurations that yield inferior solutions in
a controlled fashion, SA is able to jump out of local minima
and potentially find a more promising downhill path. The ac-
ceptance of uphill moves is carefully controlled by 7. Although
the global optimal solution is not guaranteed, SA has been
found to consistently provide solutions close to it. Because of
its probabilistic nature, SA is independent of its initial starting
design.

A typical annealing process can be divided into high, inter-
mediate, and low-control parameter regions (refer to Fig. 1).
Within the low-control parameter region, SA is relatively in-
efficient since a large number of function evaluations are
required to produce a relatively small improvement in the
objective function.' To reduce the number of function evalu-
ations required in this region, and therefore increase the overall
efficiency of SA, a modified simulated annealing algorithm,
simulated annealing with iterative improvement (SAWI), was
developed by the anthors and is used in this study.” By pre-
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Fig. 1 Typical annealing curve showing high, intermediate, and
low regions.

maturely terminating SA at the end of the intermediate region
(identified by E, in Fig. 1) and employing a random search
iterative improvement method to conduct a local search for the
optimal solution within the low-control parameter region, the
overall number of function evaluations required can be signif-
icantly reduced. The point of premature termination of the SA
run that signifies the end of the intermediate region is not
known a priori, and must therefore be predicted. For this pur-
pose a transition parameter is used that monitors the number
of inferior solutions that the algorithm has accepted vs the total
number of inferior solutions during each Markov chain.” The
authors found from experimentation that when this ratio lies
between 0.10—0.30, the transition point has been reached. For
several test problems in mechanical design, SAWI was found
to require 30—40% less computation time than pure SA.”

To further reduce computation time requirements and main-
tain the number of flowsolves required on the order of hun-
dreds, two strategies were employed. First, employing a rela-
tively fast cooling schedule, i.e., decreasing the control
parameter relatively rapidly, results in the acceptance of fewer
inferior solutions and faster convergence. However, care must
be taken in specifying a cooling schedule because rates that
are too fast will result in quenching, or convergence to nearby
high-lying local minima. For this study a 8 of 0.30 was found
to yield good solutions. Second, each design variable was al-
lowed to take on a finite number of equally spaced discrete
values within its upper and lower bounds. The number of dis-
crete values ranged from 30-50 points equally spaced over
the range of each design variable. Discretization results in a
more uniform search of the design space when compared to a
continuous design space with an infinite number of points. A
uniform search increases the probability of convergence to op-
timal regions in the design space, and once an optimal region
is located, a local search can be conducted to find the optimal
solution.

NPSOL

The gradient-based optimizer utilized in this study was
NPSOL.™ NPSOL is a collection of Fortran subroutines de-
signed to solve nonlinear programming problems subject to
both linear and nonlinear constraints. The optimizer employs
a sequential quadratic programming algorithm to search for the
objective function minimum. At each iteration, the search di-
rection is found from the solution of a quadratic programming
problem. In using the NPSOL optimizer, care must be taken
in specifying the difference interval used in the finite differ-
ence approximation of the gradient. Incorrect specification of
the interval may lead to erroneous results.”” Consequently,
prior to the design optimization runs, several difference inter-
vals were tested to establish a value that consistently yielded
the best solutions. Based on these studies a difference interval
of 0.0075 was used in all of the examples presented in this
article,

Problem Description
The design goal of the present study is to determine the
geometry of an axisymmetric forebody that minimizes the
aerodynamic drag. Typically, for these kinds of problems, a
linear combination of a relatively small number of base ana-
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Fig. 2 Geometric definition of forebody profile. Radii defined at
n cross sections equally spaced along the Z axis.

lytical functions is used to define the body shape. In this in-
vestigation, however, to expand the design space, a more gen-
eral body shape definition is used. Referring to Fig. 2, n
equally spaced cross sections are defined between the nose and
the end of the forebody. At each of these cross sections a
radius r, is specified. By fitting cubic splines between the radii
and enforcing an equal slope constraint between successive
splines, the profile of the forebody is defined. A full rotation
of the profile creates the three-dimensional shape of the fore-
body. Each radius can take on any value within its upper and
lower bounds, providing an infinite number of possible solu-
tions.

The design optimization problem can therefore be formu-
lated as

min C(r) = F,/0.5pU%A

)
subject to:  0.5R,(2) = ri(z) = 1.5R,(z) i=1,...,n
where R,(z) is a baseline parabolic shape defined as

R,(2) = 0.5z, tan a[1 — (1 — z/150)7] (2)

The flight conditions are supersonic (Mach 2.4) with zero an-
gle of attack and zero lift. The nose angle is fixed at 6 deg.
The length of the forebody is 150 ft, with the cross-sectional
radius at the end fixed at ¥z, tan « and the slope maintained
at 0 deg.

The problem was solved for n = 4 and 9. The use of four
cross sections serves to provide a comparison within a rela-
tively simple design space, while the nine cross-sectional prob-
lem illustrates the relative merits of each approach in a rela-
tively complex design space.

Euler Formulation

A very efficient hybrid finite volume implicit Euler marching
method that has been in use for several years™ *® was em-
ployed in this study. The numerical formulation of this method
is based on the node-centered scheme developed originally by
Jameson (i.e., FLO67, FLO97). The three-dimensional un-
steady Euler equations are transformed to a spherical coordi-
nate system. A central-difference, physical space, finite volume
scheme is then applied to the crossflow terms and upwind finite
differences are employed in the marching direction. Runge—
Kutta time integration is then used, along with local time step-
ping and residual smoothing, to accelerate convergence to a
steady state at each crossflow plane using the flow solution at
the previous plane as an initial guess.

The implicit formulation for the streamwise terms removes
any stability constraints on the marching step-size other than
those dictated by geometric accuracy. This results in a very
fast method to compute supersonic flows with complete con-
figurations being computed with as little as 100 steps in the
streamwise direction. Simple wings and wing—-body configu-
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rations can be computed in a few minutes on a Cray super-
computer. The code is also cast in a multiblock context with
nonmatching grid interfaces. This allows for flexibility in treat-
ing complex geometries including multiple lifting surfaces and
discontinuities such as inlets and engine nacelles. The primary
restriction to this method is that the flow must remain super-
sonic. The method is also easily extended to include viscous
terms in a parabolized Navier—Stokes fashion.

The aerodynamic calculations were carried out on a rela-
tively coarse mesh consisting of 39 circumferential and 40
radial crossflow mesh points of the first conical mesh at 50
streamwise stations. This mesh was selected because it pro-
vided accurate results while neither requiring excessive
amounts of memory nor computation time. Flowsolves were
terminated when the final tolerance on the residual reached
0.001. Increasing the convergence tolerance by two orders of
magnitude more than doubled the amount of computation time
needed for one function evaluation. This combination of pa-
rameters is within a range that would allow several hundred
function evaluations to be practical on current supercomputers.

Results

Four Cross Sections

For this problem, the body radii, r = {r,, r», 75, and r,}
constitute the design variables. With n = 4, the cross sections
are spaced 30 ft apart along the forebody axis of symmetry.
NPSOL was able to find an optimal solution of C, = 0.0098
in 101 function evaluations, with r = {2.3189, 4.0886, 5.7020,
and 6.9950 ft}. Note that each function evaluation corresponds
to a flowsolve and for these types of problems the total number
of flowsolves provides a good measure of computation time.

During the stochastic optimizations trials, the specified range
for each radius r; in the design variable set r was discretized
into 50 points, equally spaced between their upper and lower
bounds. Initiated from the same point in the design space as
NPSOL, SAWI was able to find an optimal solution of C, =
0.0110 in 112 function evaluations, with r = {2.0999, 3.8342,
5.2973, and 6.8108 ft}. Comparison with the NPSOL solution
shows that both designs lie in the same region of the design
space. The profile for both solutions is illustrated in Fig. 3.
This example has shown that for a relatively simple design
space and a small number of design variables the stochastic
approach performs almost as well as the gradient-based ap-
proach, yielding comparable results with similar computational
requirements.

Nine Cross Sections

For this problem, the body radii r = {r,, ..., 1y} constitute
the design variables. With n = 9, the cross sections are now
spaced 15 ft apart along the forebody axis of symmetry. Design
runs were initiated from two distinct points in the design space.
From the first location, identified as Initial Design I in Fig. 4.
NPSOL converged to a solution of C, = 0.0120 in 262 function
evaluations [identified as Local Minimum (a) in Fig. 4]. Since
the four cross-sectional design space is a subset of the nine,
the best solution in the four cross-sectional problem must exist
in the nine. However, Local Minimum (a) is significantly
higher than the four cross-sectional problem optimal solution,
and is therefore classified as a high-lying local minimum. From
the second initial solution, identified as Initial Design II in Fig.
4, NPSOL converged to another high-lying local minimum,
identified as Local Minimum (b) in Fig. 4, with C, = 0.01781
in 266 function evaluations.

For the stochastic optimizations trials, the specified range
for each radius r; in the design variable set r was discretized
into 30 points equally spaced between their upper and lower
bounds. From Initial Design 1. SAWI converged to a solution
with C, = 0.0110 in 198 function evaluations. This solution
represents an 8.3% improvement over NPSOLs with a 24%
reduction in computation time. Because of the discretized na-
ture of the design space, this approach can only locate optimal

regions in the design space. A local search employing contin-
uous variables must then be initiated to find the optimal so-
lution in this region. Since gradient-based methods are superior
to stochastic approaches for local searches, NPSOL was used
for this task. It required an additional 31 function evaluations
(for a total of 229), converging to a solution with C, = 0.00956,
identified as Local Minimum (c) in Fig. 5. The design variable
set for this solution is r = {1.4850, 2.6254, 3.6353, 4.4298,
5.0886, 5.7350, 6.3127, and 6.8766 ft}. This represents a 2.5%
improvement over the best solution found in the four cross-
sectional problem, and a 20.3% improvement over that found
by NPSOL alone. NPSOL’s solution, which got stuck at a
high-lying local minimum previously identified as Local Min-
imum (a), is included in Fig. 5 for comparison.

When initiated from Initial Design II, SAWI converged to a
solution with C, = 0.01232 in 217 function evaluations. This
region in the design space contains Local Minimum (a) found
by NPSOL when initiated from Initial Design I. A subsequent
local search conducted with NPSOL yielded a solution with
C, = 0.01108, requiring an additional 98 function evaluations
for a total of 315. This solution, identified as Local Minimum
(d) in Fig. 6, represents less than a 1% deterioration when
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Table 1 Summary of local minima found in Figs. 4-6

Initial Coefficient No. of function
Shape profile Method design of drag evaluations
Local minimum (a) NPSOL I 0.01201 262
Local minimum (b) NPSOL I 0.01781 266
Local minimum (c) Discrete SAWI/NPSOL I 0.00956 229
Local minimum (d) Discrete SAWI/NPSOL I 0.01108 317
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Fig. 6 Forebody shape profiles of solutions for nine cross-sec-
tional problem. Design process initiated from Initial Design II.

compared to the best four cross-sectional solution. On the other
hand, it represents a 37.7% reduction over the solution found
by NPSOL alone, identified as Local Minimum (b) in Fig. 6.
For comparative purposes, Table 1 summarizes the results from
the four local minima whose profiles are illustrated in Figs.
4-6. These minimum drag results agree extremely well with
the minimum drag shape derived by Parker using linearized
supersonic theory.”’ Such agreement is noteworthy because of
the constraints of zero slope at the base and the inclusion of
nonisentropic effects that are not present in linearized super-
sonic theory.

Concluding Remarks

The optimization approach adopted in this study has shown
that stochastic methods can effectively be applied to aerody-
namic shape optimization. For relatively complex design
spaces, the approach is able to overcome the main difficulty
experienced by gradient-based optimizers, i.e., convergence to
high-lying local minima. Unlike previous investigations, the
computation time required by this formulation compares fa-
vorably with the computational requirements of gradient-based
approaches. This was achieved by using a discrete design
space and employing relatively fast cooling schedules to the
modified simulated annealing algorithm. In this manner opti-
mal regions in the design space were located relatively inex-
pensively. Within this region, local gradient-based searches
were conducted to identify the optimal solutions.

For simple well-behaved design spaces, represented by the
four cross-sectional problem, the stochastic approach yielded
comparable solutions with similar computational requirements.
However, as the level of complexity of the design space was
increased as represented by the nine cross-sectional problem,
the combination of the stochastic approach to locate optimal
regions and the gradient-based optimizer to identify optimal
solutions within those regions, yielded far superior solutions
than the gradient-based approach alone. Further, the compu-
tation time required for the combined effort of both optimizers
was comparable to the runs by the gradient-based optimizer
alone. This study has therefore demonstrated that stochastic
methods do have a practical role to play in CFD shape design.
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